
# CM **DN 12÷15**

CM ist ein Membranventil mit manueller Steuerung, kleinen Abmessungen und einer besonders kompakten Bauweise, ideal für den Einsatz auf engstem Raum.

### KOMPAKTES MEMBRANVENTIL

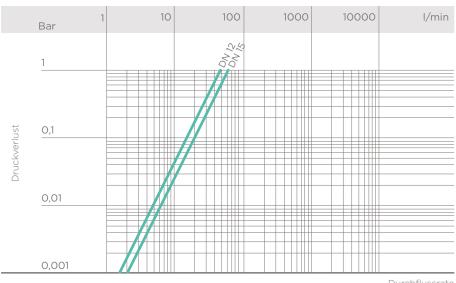
- Klebe- oder Gewindeanschlüsse
- Extrem kompakte Konstruktion
- · Interne Steuerelemente aus Metall, vom Medium getrennt
- Spindel für die Bewegungsübertragung aus Edelstahl
- · Verdichter mit flexibler Membranaufhängung
- Einfacher Austausch der Dichtigkeitsmembran
- Korrosionsbeständigkeit der internen Bauteile
- **Dichtigkeitssystem CDSA** (Circular Diaphragm Sealing Area) Verwendung bis DN50 mit folgenden Vorteilen:
  - gleichmäßige Verteilung des Verschlussdrucks auf die Dichtmembrane
  - Verringerung des Anzugsmoments der Schrauben, mit denen das Ventilgehäuse am Antrieb befestigt ist
  - geringere mechanische Beanspruchung für alle Ventilkomponenten (Antrieb, Gehäuse und Membran)
  - einfache Reinigung der Innenbereiche des Ventils
  - Minimierung des Risikos der Anhäufung von Ablagerungen, Verunreinigungen oder Schäden an der Membrane durch Kristallisationsprozesse
  - Reduzierung des Betätigungsmoments

| Technische Spezifikation | en                                                                                                                                                                                                                             |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aufbau                   | Kompaktes Membranventil mit einfachem Aufbau                                                                                                                                                                                   |
| Dimensionsbereich        | DN 12÷15                                                                                                                                                                                                                       |
| Nenndruck                | PN 6 bei 20° C Wassertemperatur                                                                                                                                                                                                |
| Temperaturbereich        | 0° ÷ 60° C                                                                                                                                                                                                                     |
| Standardanschluss        | Klebeanschluss: EN ISO 1452, EN ISO 15493, BS 4346-1,<br>DIN 8063, NF T54-028, ASTM D 2467, JIS K 6743. Für den<br>Anschluss an Rohrleitungen nach EN ISO 1452, EN ISO<br>15493, DIN 8062, NF T54-016, ASTM T 1785, JIS K 6741 |
|                          | <b>Gewindeanschluss:</b> ISO 228-1, DIN 2999, ASTM D 2464, JIS B 0203                                                                                                                                                          |
| Bezugsnormen             | <b>Richtlinien für den Aufbau:</b> EN ISO 16138, EN ISO 1452, EN ISO 15493                                                                                                                                                     |
|                          | Testmethoden und -anforderungen: ISO 9393                                                                                                                                                                                      |
|                          | Kriterien für die Installation: DVS 2204, DVS 2221, UNI 11242                                                                                                                                                                  |
| Ventilwerkstoff          | Gehäuse: PVC-U Deckel und Handrad: PA-GR                                                                                                                                                                                       |
| Membranwerkstoff         | EPDM, FPM, PTFE                                                                                                                                                                                                                |
| Steuerungsoptionen       | Manuelle Steuerung; pneumatischer Antrieb                                                                                                                                                                                      |



- Handradsteuerung aus PA-GR komplett versiegelt mit hoher mechanischer Beständigkeit, mit ergonomischem Griff für optimale Manövrierbarkeit
- 2 Integrierter und verstellbarer Schließbegrenzer, begrenzt die übermäßige Kompression der Membran oder gewährleistet einen Mindestdurchfluss des Mediums
- **Optische Positionsanzeige,** serienmäßig
- 4 Deckel aus PA-GR mit Muttern aus Edelstahl durch Kunststoffkappen vollständig geschützt, und frei von Bereichen, in denen sich Unreinheiten ansammeln können. Rundes und symmetrischen internes Spannprofil der Membran
- Schrauben aus Edelstahl die auch von oben montiert werden können
- **Gewindeeinsätze aus Metall** für die Verankerung der Ventile

# TECHNISCHE DATEN


## **TEMPERATURABHÄNGIGE DRUCKÄNDERUNG**

Für Wasser und ungefährliche Flüssigkeiten, für die das Material als CHEMISCH BESTÄNDIG eingestuft wurde. In allen anderen Fällen ist eine entsprechende Senkung des Nenndrucks PN erforderlich (25 Jahre mit Sicherheitsfaktor).

|               | Bar | -40 | -20 | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | °C |
|---------------|-----|-----|-----|---|----|----|----|----|-----|-----|-----|----|
|               | 16  |     |     |   |    |    |    |    |     |     |     |    |
|               | 14  |     |     |   |    |    |    |    |     |     |     |    |
|               | 12  |     |     |   |    |    |    |    |     |     |     |    |
| ruck          | 10  |     |     |   |    |    |    |    |     |     |     |    |
| Betriebsdruck | 8   |     |     |   |    |    |    |    |     |     |     |    |
| Bet           | 6   |     |     |   |    |    |    |    |     |     |     |    |
|               | 4   |     |     |   |    |    |    |    |     |     |     |    |
|               | 2   |     |     |   |    |    |    |    |     |     |     |    |
|               | 0   |     |     |   |    |    |    |    |     |     |     |    |

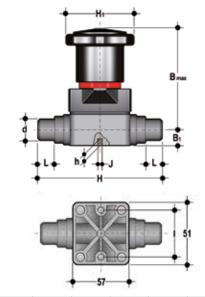
Betriebstemperatur

## **DRUCKVERLUST-DIAGRAMM**



Durchflussrate

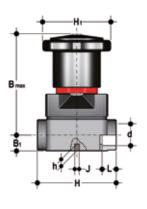
## **DURCHFLUSSKOEFFIZIENT** K<sub>v</sub> 100

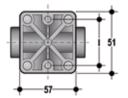

Unter dem Durchflusskoeffizienten K,100 versteht man den Durchfluss Q in I/min für Wasser bei 20° C und einem Druckverlust Δp von 1 bar bei völlig geöffnetem Ventil.

Die in der Tabelle angegebenen Werte für K, 100 gelten für ein vollständig geöffnetes Ventil.

| DN                       | 12 | 15 |
|--------------------------|----|----|
| K <sub>v</sub> 100 l/min | 47 | 60 |

Die in diesem Prospekt enthaltenen Daten werden nach bestem Wissen erteilt. FIP haftet nicht für nicht direkt aus internationalen Normen abgeleitete Daten. FIP behält sich das Recht auf jegliche Änderungen vor. Installations- und Wartungsarbeiten sind von Fachleuten vorzunehmen.

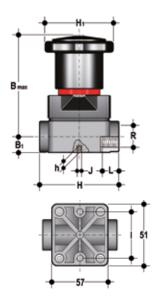

# **ABMESSUNGEN**




### **CMDV**

Kompaktes Membranventil mit Klebestutzen, metrische Serie

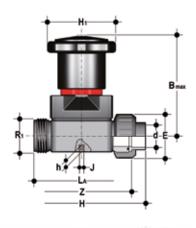
| d  | DN | PN | B max | B <sub>1</sub> | Н   | h | H <sub>1</sub> | I  | J  | L  | g   | Artikelnum-<br>mer EPDM | Artikelnum-<br>mer FPM | Artikelnum-<br>mer PTFE |
|----|----|----|-------|----------------|-----|---|----------------|----|----|----|-----|-------------------------|------------------------|-------------------------|
| 20 | 15 | 6  | 86    | 15             | 124 | 8 | 58,5           | 35 | M5 | 17 | 310 | CMDV020E                | CMDV020F               | CMDV020P                |

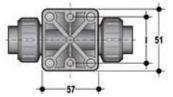





#### **CMIV**

Kompaktes Membranventil mit Klebemuffen, metrische Serie

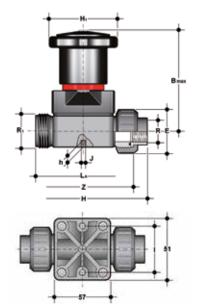

| d  | DN | PN | B max | B <sub>1</sub> | Н  | h | H <sub>1</sub> | I  | J  | L  | g   | Artikelnum-<br>mer EPDM |          | Artikelnum-<br>mer PTFE |
|----|----|----|-------|----------------|----|---|----------------|----|----|----|-----|-------------------------|----------|-------------------------|
| 16 | 12 | 6  | 86    | 15             | 75 | 8 | 58,5           | 35 | M5 | 14 | 270 | CMIV016E                | CMIV016F | CMIV016P                |
| 20 | 15 | 6  | 86    | 15             | 75 | 8 | 58,5           | 35 | M5 | 16 | 270 | CMIV020E                | CMIV020F | CMIV020P                |




**CMFV** 

Kompaktes Membranventil, zylindrische BSP Gewindemuffe

| R    | DN | PN | B max | B <sub>1</sub> | Н  | h | H <sub>1</sub> | I  | J  | L    | g   | Artikelnum-<br>mer EPDM | Artikelnum-<br>mer FPM | Artikelnum-<br>mer PTFE |
|------|----|----|-------|----------------|----|---|----------------|----|----|------|-----|-------------------------|------------------------|-------------------------|
| 3/8" | 12 | 6  | 86    | 15             | 75 | 8 | 58,5           | 35 | M5 | 11,5 | 270 | CMFV038E                | CMFV038F               | CMFV038P                |
| 1/2" | 15 | 6  | 86    | 15             | 75 | 8 | 58,5           | 35 | M5 | 15   | 270 | CMFV012E                | CMFV012F               | CMFV012P                |



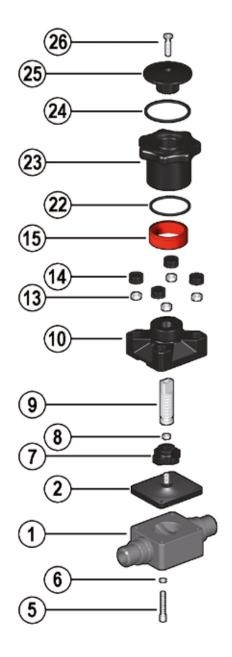



#### **CMUIV**

Membranventil mit BSP Gewindemuffen für Klebeanschluss

| d  | DN | PN | B<br>max | Е  | Н     | h | H <sub>1</sub> | I  | J  | $L_A$ | $R_1$ | Z    | g   | Artikelnum-<br>mer EPDM | Artikelnum-<br>mer FPM | Artikelnum-<br>mer PTFE |
|----|----|----|----------|----|-------|---|----------------|----|----|-------|-------|------|-----|-------------------------|------------------------|-------------------------|
| 20 | 15 | 6  | 86       | 41 | 129,5 | 8 | 58,5           | 35 | M5 | 90    | 1"    | 97,5 | 285 | CMUIV020E               | CMUIV020F              | CMUIV020P               |




#### **CMUFV**

Kompaktes Membranventil mit zylindrischer BSP Gewindemuffe

| R    | DN | PN | B<br>max | Е  | Н     | h | H <sub>1</sub> | I  | J  | $L_A$ | $R_1$ | Z    | g   | Artikelnum-<br>mer EPDM | Artikelnum-<br>mer FPM | Artikelnum-<br>mer PTFE |
|------|----|----|----------|----|-------|---|----------------|----|----|-------|-------|------|-----|-------------------------|------------------------|-------------------------|
| 1/2" | 15 | 6  | 86       | 41 | 129,5 | 8 | 58,5           | 35 | M5 | 90    | 1"    | 97,5 | 285 | CMUFV012E               | CMUFV012F              | CMUFV012P               |

## KOMPONENTEN

## **EXPLOSIONSZEICHNUNG**



- 1 · Gehäuse (PVC-U 1)
- 2 · Membrane (EPDM, FPM, PTFE - 1)
- 5 · Befestigungsschraube (Edelstahl 4)
- 6 · Unterlegscheibe (Edelstahl 4)
- 7 · Druckstück (PA-GR 1)
- 8 · Mutter (Edelstahl 1)
- 9 · Spindel (Edelstahl 1)
- 10 · manueller Antrieb (PA-GR 1)
- 13 · Mutter (Edelstahl 4)
- 14 · Schutzkappe (POM 4)
- 15 · Optische Anzeige (PVDF 1)
- **22** · O-Ring (NBR 1)
- 23 · Handrad (PA-GR 1)
- 24 · O-Ring (NBR 1)
- 25 · Deckel (PA-GR 1)
- **26** · Befestigungsschraube (Edelstahl 1)

In Klammern ist das Material der Komponente und die gelieferte Menge angegeben

#### **AUSBAU**

Wenn das Ventil bereits in der Leitung installiert ist, muss das Medium stromaufwärts abgesperrt werden und die Armatur muss drucklos sein. Falls erforderlich, muss die Anlage stromabwärts vollständig entleert werden. In Gegenwart von gefährlichen Flüssigkeiten muss das Ventil entleert und gelüftet werden.

Die Membrane ist das Teil des Ventils, welches mechanischen und chemischen Belastungen durch das Medium am meisten ausgesetzt ist. Die Prüfung der Membrane muss regelmäßig und in Abhängigkeit der Betriebsbedingungen durchgeführt werden. Hierzu muss die Membrane vom Handrad und vom Ventilgehäuse getrennt werden.

- Die vier Schrauben (5) lösen und das Gehäuse (1) vom Schaltwerk trennen.
- 2) Die Membran (2) vom Verschluss (7) abschrauben.
- 3) Falls erforderlich, die Membran (2) reinigen oder austauschen.
- 4) Falls erforderlich, die Spindel (9) fetten.

#### **EINBAU**

- Die Membran (2) muss vollständig auf den Verdichter (7) im
   Uhrzeigersinn aufgeschraubt werden, falls nötig, gegen den Uhrzeigersinn drehen, um die Löcher für die Schrauben perfekt auszurichten.
- Den manuellen Antrieb (10) mit den Schrauben (5) am Gehäuse (1) befestigen. Die Schrauben über Kreuz anziehen und darauf achten, dass die Membran nicht übermäßig komprimiert wird.

## INSTALLATION

Das Ventil kann in jeder beliebigen Position und Richtung installiert werden. Während der Inbetriebnahme der Anlage sicherstellen, dass keine undichten Stellen zwischen der Membran und dem Ventilgehäuse vorhanden sind, eventuell die Verbindungsschrauben (5) festziehen.

#### REGULIERUNG

Die Werkseinstellung gewährleistet immer die Dichtheit, ohne weitere Maßnahmen ergreifen zu müssen. Für eine andere Einstellung: Das Handrad drehen, bis die minimal erforderliche Öffnungsposition erreicht ist, die Schraube (26) mit einem Inbussschlüssel lösen.

Den Deckel (25) entfernen und das Handrad (23) im Uhrzeigersinn drehen, bis Sie einen Widerstand bei der Drehung feststellen.

Falls erforderlich, den O-Ring (24) in seinen Sitz einlegen und den Deckel

(25) wieder auf das Handrad montieren: Die doppel-D-förmige Einrastform muss auf die Spindel (9) passen und die Nuten des Deckels müssen mit kleinen Drehungen auf die des Handrads abgestimmt werden.

Die Schraube (26) mit einem relativ hohen Anzugsmoment festziehen.

Jede Drehung des Handrads entspricht einem Hub von 1,75mm.